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Coursework 1: Sensing 
Introduction 
In today’s world of social-media savvy individuals, several conclusion can be drawn from the content of their 
posts, tweets or hashtags. It has also been shown that moods and behaviours are heavily influenced by local 
daylight levels (1).  By combining information gathered from a social media API and locally recorded light levels, 
several conclusions could potentially be drawn.  
 
Prior work in this field has focussed on correlating weather with tweet sentiment. Tweether, a real time weather 
and tweet visualisation tool does just this. It collects live tweet data and weather from APIs to create 
visualisations of the information.  
 
The project scope was based on the geographic location that was available during the project execution time. In 
this case, the location was the my home, situated in North West London, near to Hampstead Heath. This is a 
well-known, popular location for dog walkers (2). The incidence of the word ‘dog’ used across social media could 
be tracked in correlation with daylight levels. This had potential to uncover not only dog walking patterns but also 
when people are interacting with their pets most. By using daylight level, it combined both time of day and local 
weather conditions into a single metric. On top of this, basic sentiment analysis was completed to provide 
greater insight into the pattern of data. 
 
The collected data could be used by various groups such as advertisers, local shops or residents for a variety of 
purposes including timed marketing, anticipating customer surges or finding a social time to walk their dog 
respectively.  

Objectives 
This project had four main objectives: 

1. Collect light level using a sensor and wirelessly transmit this data to the my personal computer for 
further analysis. This would be continuous time-series data collected in real time. 

2. Collect social media posts in the local area that use the word ‘dog’. Again, this would be collected and 
stored in real time. 

3. Analyse the sentiment of each tweet 
4. Complete data analysis on these data sources together to highlight patterns 
5. Create an online platform to visualise the collected data and analysis for potential users 

Planning 
In order to keep the project on track, a Gantt chart was used as shown in Figure 1. This accounted for the stages 
of design including development, testing and delivery. 
 

 
Figure 1 - Project Gantt Chart 
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Data Sources and Sensing Set-Up 
Development 
At the top level, a Raspberry Pi was selected over Arduino due to its full computational capacity. This allowed for 
easy data storage and wireless upload without need for additional components. 
 
When looking at collecting light level data from the local area surrounding my house, the options were split 
between  

1. Existing data collection services including APIs 
2. Setting up a new collection sensor 

For the purposes of furthering my own breadth of knowledge and skills in this area, option two was selected. This 
is a completely different method used to the social media technique used, giving variety to the project.  
 
There were a range of light sensor types to choose from including light dependent resistors, photovoltaic and 
photodiode. These sensors all have different properties including measured wavelength range and intensity 
measurements.  
 
To collect data from social media, there were three main options; Twitter, Facebook and Instagram. These are 
the most widely used social media platforms in the UK excluding YouTube, which doesn’t fit the requirements of 
this project (3). From these, Instagram was eliminated due to its restrictive rate limits (4). Twitter was selected 
over Facebook due to the way in which it used by a wide audience to share primarily text-based information.  

Selected Data Sources 
To measure light intensity, sensor BH1750 was selected for its low cost, easy accessibility and suitability to 
‘obtain the ambient light data ’using a photo diode ‘with approximately human eye response (5). It was able to 
capture light level at high resolution to the nearest lux. 
 
On the social media side, Twitter was used to search for the keyword ‘dog’ within a 15 km radius of the 
Raspberry Pi location. This radius was selected as a local area that would likely have the same weather at one 
time, and therefore light intensity. 

Light Level Sensing Set-Up 
The light sensor itself was mounted inside a small box and sealed to the window using tape, as shown in Figure 
2. This method helped to isolate the light sensor from light inside the room or the effects of the curtain being 
opened or closed. After testing, it was found that turning on and off the lights inside changed the reading by 0 lx, 
while opening and closing the curtains changed the reading by 3 lx. This was deemed an acceptable fluctuation 
as it is 0.4 % of the average daylight reading. 

 

Figure 2 - Light sensor set up 
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The sensor communicated with the Raspberry Pi (RPi) using the I2C 
bus on port 1. The sensor itself had several resolution levels. High 
resolution was selected, giving results to the nearest lux. This was 
important for collecting results at dawn and dusk where the light levels 
would increase or decrease respectively very quickly. Figure 3 shows 
the poor response of the low resolution option at lower light levels. 
High resolution mode has a longer measurement time, although this is 
unimportant for this application. 

Twitter Sensing Set-Up 
Before setting up the Twitter sensing platform, a developer account 
was made and an app created. This allowed keys, secret keys and 
access tokens to be generated for the app. These were then 
authenticated at the beginning of the programme script. 

Data collection and Storage Process 
Data Collection 
Both the Twitter and Light Intensity were sampled at a rate of 1/300 Hz, equivalent to one sample every 5 
minutes.  This rate was selected to be suitable for both data sources.  
 
Light intensity at dawn and dusk changes significantly within the space of an hour. It was found that collecting a 
data point every 5 minutes gave sufficient precision to interpolate the missing data. Furthermore, the light 
intensity was sampled every 10 seconds for the 5 minute interval and then averaged. This helped to reduce the 
effect of anomalies, such as a bright car driving past. These intermediate measurements were only stored for the 
5 minutes that they were relevant, and then deleted. This script was adapted from an existing program by Matt 
Hawkins (6). 
 
Tweepy, a Python wrapper for the Twitter API was used to collect the tweets. After some preliminary testing, it 
was found that there are usually under 10 new Tweets every five minutes. This rate is well below the twitter rate 
limit of 15 requests per 15 minutes. The script searches for new tweets (using the sinceID argument) with the 
keyword ‘dog’ within a 15km radius of the home, with geographical coordinates -----, ------.  
 
The sentiment of each Tweet was recorded as either positive, negative or neutral. This analysis was completed 
by an existing Python based sentiment analysis library, TextBlob. The implementation of this library was adapted 
from the GeeksforGeeks sentiment analysis script (7). The TextBlob sentiment analysis works by comparing the 
tweet with a model of labelled data created from movie reviews.  

Communication Protocols 
To communicate with the RPi, a secure shell (SSH) was used. Through use of Remote.it, the RPi could be 
controlled remotely. When the RPi was set up, a Weaved service was installed. Screen was then used to run 
multiple terminals at once and conveniently switch between them. This was incredibly useful when running two 
scripts at once, as it allowed the terminal to be detached from without interrupting the script.  

Storage 
Every five minutes, the data was stored in a CSV file, with each new entry forming a new row. There were two 
separate files, one for the light data and one for Twitter. Every 12 hours, a new CSV file was created and the data 
was stored there for the following 12 hours. This prevented any problems that could have arisen from overwriting 
or spoiling the earlier data.  
 
To prevent data loss, these CSVs were backed up online every 24 hours. This was done using Rclone, a 
command line program to sync files and directories. The Box variant of this software was selected to copy all 
CSVs to a folder in a Box account. This allowed the data to be viewed from any computer at any time.  A bash 
script written by Claude Pageau (8) was adapted to copy the ‘Data’ folder, stored locally on the RPi to a ‘SIOT’ 
folder on the my Box account. By copying files rather than syncing the folder, no data is ever overwritten. When a 
file is copied twice, it is stored as a new ‘version’ on Box. A cronjob was then created to run the bash script every 
24 hours.  
  

Figure 3 - High resolution (grey) and low 
resolution (black) modes of the light sensor 
(5) 
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Development 
Before using Box to back up data, several other options were trialled. Firstly, it was attempted to use the Box API 
directly. This proved overly complex for what was required, so Google Drive was trialled. PyDrive was used to 
automatically backup the files. The problem with this method was storage size; the my Google Drive was almost 
full. This is when RClone was trialled with Box, and worked well as a smooth way of backing up the information to 
a location with unlimited storage. 

End-to-end System 
A system diagram for the entire platform can be 
seen in Figure 4.  
 
The system is operated by a Raspberry Pi model 
3B+ connected to WiFi. This computer ran two 
Python scripts continuously for 19 days. One 
script collected the light sensor information, 
while the other collected Twitter information. 
These scripts both wrote to CSVs in a ‘Data’ 
folder stored locally on the RPi. As stated earlier, 
these CSVs were then uploaded to Box using 
RClone. 
 
To use this data for the next stage of the project, 
it was downloaded to a folder stored locally on 
the my laptop. 
 
The scripts were interrupted twice during the 
course of the data collection, leaving short gaps 
of data. These gaps are sufficiently short that 
interpolation can be used.  
 

Basic Time Series Data Analysis 
The data collected was recorded on very different 
scales, making them difficult to compare directly. 
The two datasets were normalised, as shown in 
Figure 5. Comparing the Light Level and Twitter 
count data, it can be seen that the peaks of the 
light level lags slightly behind the twitter count 
peaks. The Tweet sentiment score behaves 
erratically without a clear visual pattern. 
 
 

Figure 5 - Normalised full datasets 

  

Figure 4 - Sensing system diagram 
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Coursework 2: Internet of Things  
Data Platform 
Structure 
A web application called ‘LightDogs’ was 
aimed at Pet Product Companies. By 
correlating light levels and tweets using the 
word 'Dog', LightDogs could predict at what 
time marketing would be most effective for a 
business. This makes the assumption that if 
more people are Tweeting about dogs, more 
people are currently receptive to 
advertisements. 
 
LightDogs was built using the Flask 
framework. This allowed the site to be based 
on Python logic, with HTML markup to create 
the webpages. After creating an instance of 
the Flask class, a route() decorator tells 
Flask what URL should trigger each function. 
Every function in the routes script corresponds 
with one webpage. 
 
The data was originally stored in an SQL using 
SQLAlchemy, a Python SQL toolkit. However, it 
was found that during data processing the 
data needed to revert back to a Pandas 
DataFrame, meaning there wasn’t much value 
in having the SQL at all. In the final LightDogs 
version, two Pandas DataFrames (one for 
Light, one for Twitter) were instantiated in the 
__init__ file, allowing access from all other 
scripts. The helpers.py script was used to 
format the data into dataframes, while 
keeping the __init__ script clean. 
 
The entire app was structured as shown in 
Figures 6 and 7. When main.py is run, the 
app is run on a local port. 

Data Visualisation: Graphs 
Bokeh visualisations were created and 
embedded into the web app using the 
components() function. This function returns 
a <script>, containing the plot data and a 
<div> tag that the plot will be loaded into. 
These tags are then loaded into HTML 
templates. A variety of line and scatter plots 
were used depending on the data being 
displayed. The dashboards.py script 
completes this work and returns the 
<script> and <div> tags to routes.py. 
  

. 
└── LightDogs 
    ├── dashboards.py 
    ├── __init__.py 
    ├── data 
    │   ├── l_out.csv 
    │   └── t_out.csv 
    ├── data_preprocess.py 
    ├── helpers.py 
    ├── main.py 
    ├── routes.py 
    ├── sentiment.py 
    ├── static 
    │   ├── Logo.jpg 
    │   ├── css 
    │   │   ├── bootstrap-theme.min.css 
    │   │   ├── bootstrap.min.css 
    │   │   ├── home.css 
    │   │   ├── jqcloud.min.css 
    │   │   └── main.css 
    │   └── js 
    │       ├── bootstrap.min.js 
    │       ├── jqcloud.min.js 
    │       └── script.js 
    └── templates 
        ├── about.html 
        ├── analysis.html 
        ├── home.html 
        ├── index.html 
        ├── insights.html 
        ├── prediction.html 
        ├── result.html 
        └── timeline.html 
         Figure 6 - Project Structure 

Figure 7 - LightDogs web app system diagram 
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Data Interaction: GUI 
Bootstrap was used to improve the User Interface (UI) and User Experience (UX) of the web app. Custom CSS was 
then used to overwrite some of the Bootstrap standard UI, changing the look and feel of the LightDogs web app, 
as shown in Figure 8. A master template called ‘index’ was used to format the basis of every page, providing a 
navigation bar at the top. This HTML file was then inherited by every other HTML file. Every further page simply 
inserted it’s content into the block content container of the index file. 
 
It was important that users could interact with the Bokeh data visualisations for their individual purpose. The 
tools section of each Bokeh plot were altered to allow for panning, wheel zooming, box zooming, resetting and 
downloading the plots. Some plots were also linked to behave simultaneously, such as the Timeline Plots. A 
hover tool was included to allow for more specific data analysis. An interactive legend was included, allowing the 
user to switch between visualised datasets. These features were all demonstrated in the project video. 
 

 
Figure 8 - An example of the LightDogs GUI 

 

Data Visualisation: Word Cloud  
A word cloud was also added to visualise the 
most common words used in every tweet. The 
more common the word, the larger and more 
centrally it is shown in the word cloud. As 
anticipated, the word ‘dog’ is most used. The 
word cloud worked by first searching through 
all tweets, and calculating the frequency of 
every word used, excluding words shorter than 
three letters and stop words, such as ‘am’, ‘is’ 
or ‘are’. This data is then written to a JSON file. 
In the HTML for the page, a JQuery script calls 
the LightDogs endpoint, gets the data and 
builds a word cloud. A JavaScript file is then 
called, in which the LightDogs endpoint 
word_cloud is called and visualises the word 
cloud using JQCloud. This method was adapted from Prateek Jain’s Tutorial on using JQCloud with Flask (9). The 
styling of this word cloud was customised to match the LightDogs UI, as shown in Figure 9.  

Figure 9 - Word cloud of most commonly tweeted words 
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Data Actuation 
LightDogs allows users to find out if their selected time to send out 
marketing materials will be effective. On the ‘Prediction’ page, a date 
and time can be inputted, returning a statement telling the user if 
their selected time is good or not. This has been built using a web 
form with a JQuery date selector tool, as shown in Figure 10. This 
ensures that the inputted date is in the correct format. As this Web 
App was only a prototype, the results were based on a simple time 
filter, checking if the inputted time is between 7 am and 10 pm, the 
timings found to have most Tweet activity. In the future, more data 
could be collected over several months, and a statistical model 
could be built. By modelling the relationship between tweets and 
daylight level, as well as daylight level and time of  day, a prediction 
could be made.  

Data Analytics, Inferences and Insights 
All plots shown here have been directly downloaded from the LightDogs web App. The code was developed in a 
Jupyter Notebook and then transferred to the main project. 

Pre-processing 
The data collected from Coursework 1 spanned 19 days, from 19th December 2018 to 6th January 2019. There 
was a gap in the Twitter data on the 24th December. This was caused by an error in the script collecting Tweets, 
preventing the script from running if no new tweets are found. This problem was rectified and a further 8 days of 
continuous data was collected. Another gap caused by a loss of WiFi connection paused the project on 1st 
January. These gaps were filled using an imputation method; all missing values were filled with the mean value 
of that dataset.  After all of the data was collected, the numerous CSVs were combined into one for all of the 
Light data and one for all of the Twitter data by running the data_preprocess.py script. The twitter data was 
downsampled into one hour bins, showing how many tweets were found each hour.   
 
The sentiment of each tweet was already recorded during Coursework 1. The script sentiment.py then 
calculated a ‘sentiment score’ for every hour of collected data using Equation 1. This equation assigns a score of 
1 to every positive tweet, -1 to every negative tweet and 0 to every neutral tweet. These scores were then 
returned to routes.py. 
 

𝑠𝑒𝑛𝑡𝑖𝑚𝑒𝑛𝑡	𝑠𝑐𝑜𝑟𝑒 =
(1)𝑛/0123245 + (−1)𝑛859:3245 + (0)𝑛85<3=:>

𝑛/0123245 + 𝑛859:3245 + 𝑛85<3=:>
 

(1) 

Autocorrelation (ACF) 
ACF correlates the time series data with itself at past lags, This is shown in Figure 11. As expected, the Light 
data is highly correlated every 24 hours while the Tweet Incidence and Sentiment data follows a 12 hour 
correlation peak cycle.  
 

 

Figure 10 - JQuery datetime selector 
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Figure 11 - ACF of each dataset 

Seasonality 
The data series could be broken down into their components; trend, seasonality and noise. In order to do this, 
the Light data was downsampled into one hour bins. The results can be seen in Figure 12.  

 

 
Figure 12 - Trend, seasonality and noise of the datasets 

Correlation 
To measure the correlation between these datsets, 
the Pandas corr function was used to compute 
pairwise correlation. The results are shown in Table 
1.  

Dataset 1 Dataset 2 Correlation 
Coefficient 

Light Level Tweet Count 0.100 
Light Level Tweet Sentiment 0.110 

Table 1 - Correlation coefficients for each dataset 
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Discussion 
From the analysis completed, several conclusions can be drawn from the collected data. Upon visual inspection 
of the normalised datasets (Figure 5) , it can be seen that the Light Level and Tweet Incidence peaks are 
correlated, with the daylight peak lagging just behind the tweet incidence peak. This indicates that people tweet 
more in daylight hours and dusk. The correlation scores (Table 1) are both low, indicating that there is not a 
strong correlation between the datasets, despite this feature. After autocorrelation (Figure 11) was completed, it 
can be seen that the Light Levels operate on a 24 hour cycle, as expected the tweet incidence and sentiment 
follows a 12 hour cycle of peaks and troughs. Looking at the seasonality of the data (Figure 12) showed that the 
number of Tweets peaked on Christmas day while the sentiment of these tweets was lowest just before the 25th 
of December. The seasonal data shows the same patterns as were found through ACF. Finally, the word cloud 
(Figure 9) as anticipated, displayed ‘dog’ as the most common word. The next most common was ‘https’, 
showing that a large proportion of the tweets included a hyperlink. The next most common words included 
‘abandoned’, ‘CCTV’ and ‘DogsTrust’, showing that a large volume of the tweets were in relation to lost dogs or 
the prevention of such an incident.  

Conclusions 
Improvements 
In the future, this project could be improved through three main measures: 

1. Flask, although an excellent method to quickly launch Web Apps, does not have the same functionality 
as creating an app in JavaScript. If the project were to be rolled out on a larger scale with increased 
functionality, the framework should switch to Javascript.  

2. Data should be collected from a wider catchment area to improve the accuracy based on location.  
3. The question of ‘correlation is not causation’ needs to be further analysed, Light and Twitter data alone 

are not enough to draw concrete conclusions. 

Evaluation 
Overall the project achieved what it set out to do; two datasets from different sources were collected and 
compared via an online platform. The variety of techniques and processes used allowed my knowledge to be 
greatly expanded. 

Avenues for future work and potential impact 
The project was aimed at pet product companies, but only collected data with the word ‘dog’. In the future, this 
could be expanded to account for a variety of other pets. The project could also be creatively adapted to fit a 
different market all together. By correlating more specific tweets about dog walking and daylight level, 
conclusions could be drawn about when most people are walking their dogs. A platform could then be used to 
show dog owners when other dog walkers are out, creating a kind of dog walking social media platform.  
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