

Dyson School of Design Engineering | MEng Design Engineering

Module Exam

Module code and Name DE4-SIOT Sensing & IoT

Student CID 01049103

Assessment date 10th Jan 2019

Presentation URL (publicly accessible link):
https://www.youtube.com/watch?v=yshwWDmwJr8

Code & Data (publicly accessible link):

https://www.youtube.com/watch?v=yshwWDmwJr8

 1

Coursework 1: Sensing
Introduction
In today’s world of social-media savvy individuals, several conclusion can be drawn from the content of their
posts, tweets or hashtags. It has also been shown that moods and behaviours are heavily influenced by local
daylight levels (1). By combining information gathered from a social media API and locally recorded light levels,
several conclusions could potentially be drawn.

Prior work in this field has focussed on correlating weather with tweet sentiment. Tweether, a real time weather
and tweet visualisation tool does just this. It collects live tweet data and weather from APIs to create
visualisations of the information.

The project scope was based on the geographic location that was available during the project execution time. In
this case, the location was the my home, situated in North West London, near to Hampstead Heath. This is a
well-known, popular location for dog walkers (2). The incidence of the word ‘dog’ used across social media could
be tracked in correlation with daylight levels. This had potential to uncover not only dog walking patterns but also
when people are interacting with their pets most. By using daylight level, it combined both time of day and local
weather conditions into a single metric. On top of this, basic sentiment analysis was completed to provide
greater insight into the pattern of data.

The collected data could be used by various groups such as advertisers, local shops or residents for a variety of
purposes including timed marketing, anticipating customer surges or finding a social time to walk their dog
respectively.

Objectives
This project had four main objectives:

1. Collect light level using a sensor and wirelessly transmit this data to the my personal computer for
further analysis. This would be continuous time-series data collected in real time.

2. Collect social media posts in the local area that use the word ‘dog’. Again, this would be collected and
stored in real time.

3. Analyse the sentiment of each tweet
4. Complete data analysis on these data sources together to highlight patterns
5. Create an online platform to visualise the collected data and analysis for potential users

Planning
In order to keep the project on track, a Gantt chart was used as shown in Figure 1. This accounted for the stages
of design including development, testing and delivery.

Figure 1 - Project Gantt Chart

Term Week 6 7 8 9 10 11 X1 X2 X3 1

Date

05
-N

ov

12
-N

ov

19
-N

ov

26
-N

ov

03
-D

ec

10
-D

ec

17
-D

ec

24
-D

ec

31
-D

ec

07
-Ja

n

Project set

Select API and purchase sensors KEY

Set up Raspberry Pi Working Time

Set up sensors and API data collection Contingency

Testing Deadline

Set up communication protocols

Set up data storage porotocols

Initial data testing to see basic patterns

Collect Data

In depth data analysis

Predicative modelling

Design specifications

Platform selection

Platform setup and framework

Create online content from data analysis

Create novel visualisations of the data

Present future opportunities

Deadline

Co
ur

se
w

or
k

1
Co

ur
se

w
or

k
2

 2

Data Sources and Sensing Set-Up
Development
At the top level, a Raspberry Pi was selected over Arduino due to its full computational capacity. This allowed for
easy data storage and wireless upload without need for additional components.

When looking at collecting light level data from the local area surrounding my house, the options were split
between

1. Existing data collection services including APIs
2. Setting up a new collection sensor

For the purposes of furthering my own breadth of knowledge and skills in this area, option two was selected. This
is a completely different method used to the social media technique used, giving variety to the project.

There were a range of light sensor types to choose from including light dependent resistors, photovoltaic and
photodiode. These sensors all have different properties including measured wavelength range and intensity
measurements.

To collect data from social media, there were three main options; Twitter, Facebook and Instagram. These are
the most widely used social media platforms in the UK excluding YouTube, which doesn’t fit the requirements of
this project (3). From these, Instagram was eliminated due to its restrictive rate limits (4). Twitter was selected
over Facebook due to the way in which it used by a wide audience to share primarily text-based information.

Selected Data Sources
To measure light intensity, sensor BH1750 was selected for its low cost, easy accessibility and suitability to
‘obtain the ambient light data ’using a photo diode ‘with approximately human eye response (5). It was able to
capture light level at high resolution to the nearest lux.

On the social media side, Twitter was used to search for the keyword ‘dog’ within a 15 km radius of the
Raspberry Pi location. This radius was selected as a local area that would likely have the same weather at one
time, and therefore light intensity.

Light Level Sensing Set-Up
The light sensor itself was mounted inside a small box and sealed to the window using tape, as shown in Figure
2. This method helped to isolate the light sensor from light inside the room or the effects of the curtain being
opened or closed. After testing, it was found that turning on and off the lights inside changed the reading by 0 lx,
while opening and closing the curtains changed the reading by 3 lx. This was deemed an acceptable fluctuation
as it is 0.4 % of the average daylight reading.

Figure 2 - Light sensor set up

 3

The sensor communicated with the Raspberry Pi (RPi) using the I2C
bus on port 1. The sensor itself had several resolution levels. High
resolution was selected, giving results to the nearest lux. This was
important for collecting results at dawn and dusk where the light levels
would increase or decrease respectively very quickly. Figure 3 shows
the poor response of the low resolution option at lower light levels.
High resolution mode has a longer measurement time, although this is
unimportant for this application.

Twitter Sensing Set-Up
Before setting up the Twitter sensing platform, a developer account
was made and an app created. This allowed keys, secret keys and
access tokens to be generated for the app. These were then
authenticated at the beginning of the programme script.

Data collection and Storage Process
Data Collection
Both the Twitter and Light Intensity were sampled at a rate of 1/300 Hz, equivalent to one sample every 5
minutes. This rate was selected to be suitable for both data sources.

Light intensity at dawn and dusk changes significantly within the space of an hour. It was found that collecting a
data point every 5 minutes gave sufficient precision to interpolate the missing data. Furthermore, the light
intensity was sampled every 10 seconds for the 5 minute interval and then averaged. This helped to reduce the
effect of anomalies, such as a bright car driving past. These intermediate measurements were only stored for the
5 minutes that they were relevant, and then deleted. This script was adapted from an existing program by Matt
Hawkins (6).

Tweepy, a Python wrapper for the Twitter API was used to collect the tweets. After some preliminary testing, it
was found that there are usually under 10 new Tweets every five minutes. This rate is well below the twitter rate
limit of 15 requests per 15 minutes. The script searches for new tweets (using the sinceID argument) with the
keyword ‘dog’ within a 15km radius of the home, with geographical coordinates -----, ------.

The sentiment of each Tweet was recorded as either positive, negative or neutral. This analysis was completed
by an existing Python based sentiment analysis library, TextBlob. The implementation of this library was adapted
from the GeeksforGeeks sentiment analysis script (7). The TextBlob sentiment analysis works by comparing the
tweet with a model of labelled data created from movie reviews.

Communication Protocols
To communicate with the RPi, a secure shell (SSH) was used. Through use of Remote.it, the RPi could be
controlled remotely. When the RPi was set up, a Weaved service was installed. Screen was then used to run
multiple terminals at once and conveniently switch between them. This was incredibly useful when running two
scripts at once, as it allowed the terminal to be detached from without interrupting the script.

Storage
Every five minutes, the data was stored in a CSV file, with each new entry forming a new row. There were two
separate files, one for the light data and one for Twitter. Every 12 hours, a new CSV file was created and the data
was stored there for the following 12 hours. This prevented any problems that could have arisen from overwriting
or spoiling the earlier data.

To prevent data loss, these CSVs were backed up online every 24 hours. This was done using Rclone, a
command line program to sync files and directories. The Box variant of this software was selected to copy all
CSVs to a folder in a Box account. This allowed the data to be viewed from any computer at any time. A bash
script written by Claude Pageau (8) was adapted to copy the ‘Data’ folder, stored locally on the RPi to a ‘SIOT’
folder on the my Box account. By copying files rather than syncing the folder, no data is ever overwritten. When a
file is copied twice, it is stored as a new ‘version’ on Box. A cronjob was then created to run the bash script every
24 hours.

Figure 3 - High resolution (grey) and low
resolution (black) modes of the light sensor
(5)

 4

Development
Before using Box to back up data, several other options were trialled. Firstly, it was attempted to use the Box API
directly. This proved overly complex for what was required, so Google Drive was trialled. PyDrive was used to
automatically backup the files. The problem with this method was storage size; the my Google Drive was almost
full. This is when RClone was trialled with Box, and worked well as a smooth way of backing up the information to
a location with unlimited storage.

End-to-end System
A system diagram for the entire platform can be
seen in Figure 4.

The system is operated by a Raspberry Pi model
3B+ connected to WiFi. This computer ran two
Python scripts continuously for 19 days. One
script collected the light sensor information,
while the other collected Twitter information.
These scripts both wrote to CSVs in a ‘Data’
folder stored locally on the RPi. As stated earlier,
these CSVs were then uploaded to Box using
RClone.

To use this data for the next stage of the project,
it was downloaded to a folder stored locally on
the my laptop.

The scripts were interrupted twice during the
course of the data collection, leaving short gaps
of data. These gaps are sufficiently short that
interpolation can be used.

Basic Time Series Data Analysis
The data collected was recorded on very different
scales, making them difficult to compare directly.
The two datasets were normalised, as shown in
Figure 5. Comparing the Light Level and Twitter
count data, it can be seen that the peaks of the
light level lags slightly behind the twitter count
peaks. The Tweet sentiment score behaves
erratically without a clear visual pattern.

Figure 5 - Normalised full datasets

Figure 4 - Sensing system diagram

 5

Coursework 2: Internet of Things
Data Platform
Structure
A web application called ‘LightDogs’ was
aimed at Pet Product Companies. By
correlating light levels and tweets using the
word 'Dog', LightDogs could predict at what
time marketing would be most effective for a
business. This makes the assumption that if
more people are Tweeting about dogs, more
people are currently receptive to
advertisements.

LightDogs was built using the Flask
framework. This allowed the site to be based
on Python logic, with HTML markup to create
the webpages. After creating an instance of
the Flask class, a route() decorator tells
Flask what URL should trigger each function.
Every function in the routes script corresponds
with one webpage.

The data was originally stored in an SQL using
SQLAlchemy, a Python SQL toolkit. However, it
was found that during data processing the
data needed to revert back to a Pandas
DataFrame, meaning there wasn’t much value
in having the SQL at all. In the final LightDogs
version, two Pandas DataFrames (one for
Light, one for Twitter) were instantiated in the
__init__ file, allowing access from all other
scripts. The helpers.py script was used to
format the data into dataframes, while
keeping the __init__ script clean.

The entire app was structured as shown in
Figures 6 and 7. When main.py is run, the
app is run on a local port.

Data Visualisation: Graphs
Bokeh visualisations were created and
embedded into the web app using the
components() function. This function returns
a <script>, containing the plot data and a
<div> tag that the plot will be loaded into.
These tags are then loaded into HTML
templates. A variety of line and scatter plots
were used depending on the data being
displayed. The dashboards.py script
completes this work and returns the
<script> and <div> tags to routes.py.

.
└── LightDogs
 ├── dashboards.py
 ├── __init__.py
 ├── data
 │ ├── l_out.csv
 │ └── t_out.csv
 ├── data_preprocess.py
 ├── helpers.py
 ├── main.py
 ├── routes.py
 ├── sentiment.py
 ├── static
 │ ├── Logo.jpg
 │ ├── css
 │ │ ├── bootstrap-theme.min.css
 │ │ ├── bootstrap.min.css
 │ │ ├── home.css
 │ │ ├── jqcloud.min.css
 │ │ └── main.css
 │ └── js
 │ ├── bootstrap.min.js
 │ ├── jqcloud.min.js
 │ └── script.js
 └── templates
 ├── about.html
 ├── analysis.html
 ├── home.html
 ├── index.html
 ├── insights.html
 ├── prediction.html
 ├── result.html
 └── timeline.html
 Figure 6 - Project Structure

Figure 7 - LightDogs web app system diagram

 6

Data Interaction: GUI
Bootstrap was used to improve the User Interface (UI) and User Experience (UX) of the web app. Custom CSS was
then used to overwrite some of the Bootstrap standard UI, changing the look and feel of the LightDogs web app,
as shown in Figure 8. A master template called ‘index’ was used to format the basis of every page, providing a
navigation bar at the top. This HTML file was then inherited by every other HTML file. Every further page simply
inserted it’s content into the block content container of the index file.

It was important that users could interact with the Bokeh data visualisations for their individual purpose. The
tools section of each Bokeh plot were altered to allow for panning, wheel zooming, box zooming, resetting and
downloading the plots. Some plots were also linked to behave simultaneously, such as the Timeline Plots. A
hover tool was included to allow for more specific data analysis. An interactive legend was included, allowing the
user to switch between visualised datasets. These features were all demonstrated in the project video.

Figure 8 - An example of the LightDogs GUI

Data Visualisation: Word Cloud
A word cloud was also added to visualise the
most common words used in every tweet. The
more common the word, the larger and more
centrally it is shown in the word cloud. As
anticipated, the word ‘dog’ is most used. The
word cloud worked by first searching through
all tweets, and calculating the frequency of
every word used, excluding words shorter than
three letters and stop words, such as ‘am’, ‘is’
or ‘are’. This data is then written to a JSON file.
In the HTML for the page, a JQuery script calls
the LightDogs endpoint, gets the data and
builds a word cloud. A JavaScript file is then
called, in which the LightDogs endpoint
word_cloud is called and visualises the word
cloud using JQCloud. This method was adapted from Prateek Jain’s Tutorial on using JQCloud with Flask (9). The
styling of this word cloud was customised to match the LightDogs UI, as shown in Figure 9.

Figure 9 - Word cloud of most commonly tweeted words

 7

Data Actuation
LightDogs allows users to find out if their selected time to send out
marketing materials will be effective. On the ‘Prediction’ page, a date
and time can be inputted, returning a statement telling the user if
their selected time is good or not. This has been built using a web
form with a JQuery date selector tool, as shown in Figure 10. This
ensures that the inputted date is in the correct format. As this Web
App was only a prototype, the results were based on a simple time
filter, checking if the inputted time is between 7 am and 10 pm, the
timings found to have most Tweet activity. In the future, more data
could be collected over several months, and a statistical model
could be built. By modelling the relationship between tweets and
daylight level, as well as daylight level and time of day, a prediction
could be made.

Data Analytics, Inferences and Insights
All plots shown here have been directly downloaded from the LightDogs web App. The code was developed in a
Jupyter Notebook and then transferred to the main project.

Pre-processing
The data collected from Coursework 1 spanned 19 days, from 19th December 2018 to 6th January 2019. There
was a gap in the Twitter data on the 24th December. This was caused by an error in the script collecting Tweets,
preventing the script from running if no new tweets are found. This problem was rectified and a further 8 days of
continuous data was collected. Another gap caused by a loss of WiFi connection paused the project on 1st
January. These gaps were filled using an imputation method; all missing values were filled with the mean value
of that dataset. After all of the data was collected, the numerous CSVs were combined into one for all of the
Light data and one for all of the Twitter data by running the data_preprocess.py script. The twitter data was
downsampled into one hour bins, showing how many tweets were found each hour.

The sentiment of each tweet was already recorded during Coursework 1. The script sentiment.py then
calculated a ‘sentiment score’ for every hour of collected data using Equation 1. This equation assigns a score of
1 to every positive tweet, -1 to every negative tweet and 0 to every neutral tweet. These scores were then
returned to routes.py.

𝑠𝑒𝑛𝑡𝑖𝑚𝑒𝑛𝑡	𝑠𝑐𝑜𝑟𝑒 =
(1)𝑛/0123245 + (−1)𝑛859:3245 + (0)𝑛85<3=:>

𝑛/0123245 + 𝑛859:3245 + 𝑛85<3=:>

(1)

Autocorrelation (ACF)
ACF correlates the time series data with itself at past lags, This is shown in Figure 11. As expected, the Light
data is highly correlated every 24 hours while the Tweet Incidence and Sentiment data follows a 12 hour
correlation peak cycle.

Figure 10 - JQuery datetime selector

 8

Figure 11 - ACF of each dataset

Seasonality
The data series could be broken down into their components; trend, seasonality and noise. In order to do this,
the Light data was downsampled into one hour bins. The results can be seen in Figure 12.

Figure 12 - Trend, seasonality and noise of the datasets

Correlation
To measure the correlation between these datsets,
the Pandas corr function was used to compute
pairwise correlation. The results are shown in Table
1.

Dataset 1 Dataset 2 Correlation
Coefficient

Light Level Tweet Count 0.100
Light Level Tweet Sentiment 0.110

Table 1 - Correlation coefficients for each dataset

 9

Discussion
From the analysis completed, several conclusions can be drawn from the collected data. Upon visual inspection
of the normalised datasets (Figure 5) , it can be seen that the Light Level and Tweet Incidence peaks are
correlated, with the daylight peak lagging just behind the tweet incidence peak. This indicates that people tweet
more in daylight hours and dusk. The correlation scores (Table 1) are both low, indicating that there is not a
strong correlation between the datasets, despite this feature. After autocorrelation (Figure 11) was completed, it
can be seen that the Light Levels operate on a 24 hour cycle, as expected the tweet incidence and sentiment
follows a 12 hour cycle of peaks and troughs. Looking at the seasonality of the data (Figure 12) showed that the
number of Tweets peaked on Christmas day while the sentiment of these tweets was lowest just before the 25th
of December. The seasonal data shows the same patterns as were found through ACF. Finally, the word cloud
(Figure 9) as anticipated, displayed ‘dog’ as the most common word. The next most common was ‘https’,
showing that a large proportion of the tweets included a hyperlink. The next most common words included
‘abandoned’, ‘CCTV’ and ‘DogsTrust’, showing that a large volume of the tweets were in relation to lost dogs or
the prevention of such an incident.

Conclusions
Improvements
In the future, this project could be improved through three main measures:

1. Flask, although an excellent method to quickly launch Web Apps, does not have the same functionality
as creating an app in JavaScript. If the project were to be rolled out on a larger scale with increased
functionality, the framework should switch to Javascript.

2. Data should be collected from a wider catchment area to improve the accuracy based on location.
3. The question of ‘correlation is not causation’ needs to be further analysed, Light and Twitter data alone

are not enough to draw concrete conclusions.

Evaluation
Overall the project achieved what it set out to do; two datasets from different sources were collected and
compared via an online platform. The variety of techniques and processes used allowed my knowledge to be
greatly expanded.

Avenues for future work and potential impact
The project was aimed at pet product companies, but only collected data with the word ‘dog’. In the future, this
could be expanded to account for a variety of other pets. The project could also be creatively adapted to fit a
different market all together. By correlating more specific tweets about dog walking and daylight level,
conclusions could be drawn about when most people are walking their dogs. A platform could then be used to
show dog owners when other dog walkers are out, creating a kind of dog walking social media platform.

References
1. Julie Taylor. Can Rainy Days Really Get You Down? Available from:

https://www.webmd.com/balance/features/can-rainy-days-really-get-you-down#1 [Accessed 10th January
2019]

2. City of London. Dog Walking. Available from: https://www.cityoflondon.gov.uk/things-to-do/green-
spaces/hampstead-heath/events-and-activities/Pages/dog-walking.aspx [Accessed 10th January 2019]

3. Social Media. Most Popular Social Networks in the UK. Available from: https://social-media.co.uk/list-
popular-social-networking-websites [Accessed 10th January 2019]

4. Facebook for Developers. Overview. Available from: https://developers.facebook.com/docs/instagram-
api/overview/ [Accessed 10th January 2019]

5. Rohm Semiconductor. Digital 16bit Serial Output Type Ambient Light Sensor IC. ROHM Co; 2014. Available
from: https://www.mouser.com/ds/2/348/bh1750fvi-e-186247.pdf [Accessed 10th January 2019]

6. Matt Hawkins. BH1750. [Code] Available from:
https://github.com/seblucas/i2c2mqtt/blob/master/bh1750.py [Accessed 10th January 2019]

7. Geeks for Geeks. Twitter Sentiment Analysis using Python. Available from: Accessed 10th January 2019]
https://www.geeksforgeeks.org/twitter-sentiment-analysis-using-python/

8. Claude Pageau. rclone4pi. [Code] Available from: https://github.com/pageauc/rclone4pi/wiki [Accessed
10th January 2019]

9. Prateek Jain. Visualise News Word Cloud using Python, Flask and JQCLoud. Available from:
https://www.codementor.io/prateekkrjain/visualize-news-word-cloud-using-python-flask-and-jqcloud-
8i3w57cfb [Accessed 10th January 2019]

https://www.webmd.com/balance/features/can-rainy-days-really-get-you-down#1
https://www.cityoflondon.gov.uk/things-to-do/green-spaces/hampstead-heath/events-and-activities/Pages/dog-walking.aspx
https://www.cityoflondon.gov.uk/things-to-do/green-spaces/hampstead-heath/events-and-activities/Pages/dog-walking.aspx
https://social-media.co.uk/list-popular-social-networking-websites
https://social-media.co.uk/list-popular-social-networking-websites
https://developers.facebook.com/docs/instagram-api/overview/
https://developers.facebook.com/docs/instagram-api/overview/
https://www.mouser.com/ds/2/348/bh1750fvi-e-186247.pdf
https://github.com/seblucas/i2c2mqtt/blob/master/bh1750.py
https://www.geeksforgeeks.org/twitter-sentiment-analysis-using-python/
https://github.com/pageauc/rclone4pi/wiki
https://www.codementor.io/prateekkrjain/visualize-news-word-cloud-using-python-flask-and-jqcloud-8i3w57cfb
https://www.codementor.io/prateekkrjain/visualize-news-word-cloud-using-python-flask-and-jqcloud-8i3w57cfb

